Explainable Neural Network for Sensitivity Analysis of Lithium-ion Battery Smart Production (2024)

[1]

K. Liu, Z. Wei, C. Zhang, Y. Shang, R. Teodorescu, and Q.-L. Han, “Towards long lifetime battery: AI-based manufacturing and management,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1139–1165, Jul. 2022. doi: 10.1109/JAS.2022.105599

[2]

F. Duffner, N. Kronemeyer, J. Tübke, J. Leker, M. Winter, and R. Schmuch, “Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure,” Nat. Energy, vol. 6, no. 2, pp. 123–134, Jan. 2021. doi: 10.1038/s41560-020-00748-8

[3]

F. Degen and O. Krätzig, “Future in battery production: An extensive benchmarking of novel production technologies as guidance for decision making in engineering,” IEEE Trans. Eng. Manage., vol. 71, pp. 1038–1056, Feb. 2022.

[4]

Y. Liu, R. Zhang, J. Wang, and Y. Wang, “Current and future lithium-ion battery manufacturing,” iScience, vol. 24, no. 4, p. 102332, Apr. 2021. doi: 10.1016/j.isci.2021.102332

[5]

V. Viswanathan, A. H. Epstein, Y.-M. Chiang, E. Takeuchi, M. Bradley, J. Langford, and M. Winter, “The challenges and opportunities of battery-powered flight,” Nature, vol. 601, no. 7894, pp. 519–525, Jan. 2022. doi: 10.1038/s41586-021-04139-1

[6]

Z. Wei, K. Liu, X. Liu, Y. Li, L. Du, and F. Gao, “Multilevel data-driven battery management: From internal sensing to big data utilization,” IEEE Trans. Transp. Electrif., vol. 9, no. 4, pp. 4805–4823, Dec. 2023. doi: 10.1109/TTE.2023.3301990

[7]

K. Liu, Q. Peng, Y. Che, Y. Zheng, K. Li, R. Teodorescu, D. Widanage, and A. Barai, “Transfer learning for battery smarter state estimation and ageing prognostics: Recent progress, challenges, and prospects,” Adv. Appl. Energy, vol. 9, p. 100117, Feb. 2023. doi: 10.1016/j.adapen.2022.100117

[8]

M. Lin, S. Chen, W. Wang, and J. Wu, “Multi-feature fusion-based instantaneous energy consumption estimation for electric buses,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 10, pp. 2035–2037, Oct. 2023. doi: 10.1109/JAS.2022.106010

[9]

G. Ma, Z. Wang, W. Liu, J. Fang, Y. Zhang, H. Ding, and Y. Yuan, “Estimating the state of health for lithium-ion batteries: A particle swarm optimization-assisted deep domain adaptation approach,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 7, pp. 1530–1543, Jul. 2023. doi: 10.1109/JAS.2023.123531

[10]

Y. Wang, K. Li, and Z. Chen, “Battery full life cycle management and health prognosis based on cloud service and broad learning,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1540–1542, Aug. 2022. doi: 10.1109/JAS.2022.105779

[11]

Q. Xu, M. Wu, E. Khoo, Z. Chen, and X. Li, “A hybrid ensemble deep learning approach for early prediction of battery remaining useful life,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 177–187, Jan. 2023. doi: 10.1109/JAS.2023.123024

[12]

K. Liu, Q. Peng, R. Teodorescu, and A. M. Foley, “Knowledge-guided data-driven model with transfer concept for battery calendar ageing trajectory prediction,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 272–274, Jan. 2023. doi: 10.1109/JAS.2023.123036

[13]

T. Hu, H. Ma, H. Sun, and K. Liu, “Electrochemical-theory-guided modeling of the conditional generative adversarial network for battery calendar aging forecast,” IEEE J. Emerging Sel. Top. Power Electron., vol. 11, no. 1, pp. 67–77, Feb. 2023. doi: 10.1109/JESTPE.2022.3154785

[14]

G. Wang, G. Zhao, J. Xie, and K. Liu, “Ensemble learning-based correlation coefficient method for robust diagnosis of voltage sensor and short-circuit faults in series battery packs,” IEEE Trans. Power Electron., vol. 38, no. 7, pp. 9143–9156, Jul. 2023. doi: 10.1109/TPEL.2023.3266945

[15]

X. Gu, J. Li, K. Liu, Y. Zhu, X. Tao, and Y. Shang, “A precise minor-fault diagnosis method for lithium-ion batteries based on phase plane sample entropy,” IEEE Trans. Ind. Electron., vol. 71, no. 8, pp. 8853–8861, Aug. 2024. doi: 10.1109/TIE.2023.3319717

[16]

T. Zhu, A. Cruden, Q. Peng, and K. Liu, “Enabling extreme fast charging,” Joule, vol. 7, no. 12, pp. 2660–2662, Dec. 2023. doi: 10.1016/j.joule.2023.11.016

[17]

Y. Xie, W. Li, Z. Song, B. Chen, K. Liu, R. Yang, and Y. Zhang, “A health-aware AC heating strategy with lithium plating criterion for batteries at low temperatures,” IEEE Trans. Ind. Inf., vol. 20, no. 2, pp. 2295–2306, Feb. 2024. doi: 10.1109/TII.2023.3290186

[18]

J. Li K. Liu, Q. Zhou, J. Meng, Y. Ge, and H. Xu, “Electrothermal dynamics-conscious many-objective modular design for power-split plug-in hybrid electric vehicles,” IEEE/ASME Trans. Mechatron., vol. 27, no. 6, pp. 4406–4416, Dec. 2022. doi: 10.1109/TMECH.2022.3156535

[19]

E. Ayerbe, M. Berecibar, S. Clark, A. A. Franco, and J. Ruhland, “Digitalization of battery manufacturing: Current status, challenges, and opportunities,” Adv. Energy Mater., vol. 12, no. 17, p. 2102696, May 2022. doi: 10.1002/aenm.202102696

[20]

G. Bridge and E. Faigen, “Towards the lithium-ion battery production network: Thinking beyond mineral supply chains,” Energy Res. Soc. Sci., vol. 89, p. 102659, Jul. 2022. doi: 10.1016/j.erss.2022.102659

[21]

A. Turetskyy, S. Thiede, M. Thomitzek, N. Von Drachenfels, T. Pape, and C. Herrmann, “Toward data-driven applications in lithium-ion battery cell manufacturing,” Energy Technol., vol. 8, no. 2, p. 1900136, Feb. 2020. doi: 10.1002/ente.201900136

[22]

A. Turetskyy, J. Wessel, C. Herrmann, and S. Thiede, “Battery production design using multi-output machine learning models,” Energy Storage Mater., vol. 38, pp. 93–112, Jul. 2021. doi: 10.1016/j.ensm.2021.03.002

[23]

M. F. Niri, K. Liu, G. Apachitei, L. R. Ramirez, M. Lain, D. Widanage, and J. Marco, “Machine learning for optimised and clean Li-ion battery manufacturing: Revealing the dependency between electrode and cell characteristics,” J. Cleaner Prod., vol. 324, p. 129272, Nov. 2021. doi: 10.1016/j.jclepro.2021.129272

[24]

K. Liu, M. F. Niri, G. Apachitei, M. Lain, D. Greenwood, and J. Marco, “Interpretable machine learning for battery capacities prediction and coating parameters analysis,” Control Eng. Pract., vol. 124, p. 105202, Jul. 2022. doi: 10.1016/j.conengprac.2022.105202

[25]

K. Liu, X. Hu, J. Meng, J. M. Guerrero, and R. Teodorescu, “RUBoost-based ensemble machine learning for electrode quality classification in Li-ion battery manufacturing,” IEEE/ASME Trans. Mechatron., vol. 27, no. 5, pp. 2474–2483, Oct. 2022. doi: 10.1109/TMECH.2021.3115997

[26]

E. Rohkohl, M. Schönemann, Y. Bodrov, and C. Herrmann, “A data mining approach for continuous battery cell manufacturing processes from development towards production,” Adv. Ind. Manuf. Eng., vol. 4, p. 100078, May 2022.

[27]

J. Xiao, F. Shi, T. Glossmann, C. Burnett, and Z. Liu, “From laboratory innovations to materials manufacturing for lithium-based batteries,” Nat. Energy, vol. 8, no. 4, pp. 329–339, Mar. 2023. doi: 10.1038/s41560-023-01221-y

[28]

R. P. Cunha, T. Lombardo, E. N. Primo, and A. A. Franco, “Artificial intelligence investigation of NMC cathode manufacturing parameters interdependencies,” Batteries Supercaps, vol. 3, no. 1, pp. 60–67, Jan. 2020. doi: 10.1002/batt.201900135

[29]

A. A. Pesaran, “Lithium-Ion battery technologies for electric vehicles: Progress and challenges,” IEEE Electrif. Mag., vol. 11, no. 2, pp. 35–43, Jun. 2023. doi: 10.1109/MELE.2023.3264919

[30]

T. Daniya, M. Geetha, and K. Suresh Kumar, “Classification and regression trees with GINI index,” Adv. Math. Sci. J., vol. 9, no. 10, pp. 8237–8247, Oct. 2020. doi: 10.37418/amsj.9.10.53

[31]

X. Hu, Y. Che, X. Lin, and Z. Deng, “Health prognosis for electric vehicle battery packs: A data-driven approach,” IEEE/ASME Trans. Mechatron., vol. 25, no. 6, pp. 2622–2632, Dec. 2020. doi: 10.1109/TMECH.2020.2986364

[32]

L. A. Román-Ramírez and J. Marco, “Design of experiments applied to lithium-ion batteries: A literature review,” Appl. Energy, vol. 320, p. 119305, Aug. 2022. doi: 10.1016/j.apenergy.2022.119305

Explainable Neural Network for Sensitivity Analysis of Lithium-ion Battery Smart Production (2024)

References

Top Articles
Latest Posts
Article information

Author: Carmelo Roob

Last Updated:

Views: 6293

Rating: 4.4 / 5 (45 voted)

Reviews: 84% of readers found this page helpful

Author information

Name: Carmelo Roob

Birthday: 1995-01-09

Address: Apt. 915 481 Sipes Cliff, New Gonzalobury, CO 80176

Phone: +6773780339780

Job: Sales Executive

Hobby: Gaming, Jogging, Rugby, Video gaming, Handball, Ice skating, Web surfing

Introduction: My name is Carmelo Roob, I am a modern, handsome, delightful, comfortable, attractive, vast, good person who loves writing and wants to share my knowledge and understanding with you.